Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Clin Neurophysiol ; 151: 83-91, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2316919

ABSTRACT

OBJECTIVE: Attention, working memory and executive processing have been reported to be consistently impaired in Neuro-Long coronavirus disease (COVID). On the hypothesis of abnormal cortical excitability, we investigated the functional state of inhibitory and excitatory cortical regulatory circuits by single "paired-pulse" transcranial magnetic stimulation (ppTMS) and Short-latency Afferent Inhibition (SAI). METHODS: We compared clinical and neurophysiological data of 18 Long COVID patients complaining of persistent cognitive impairment with 16 Healthy control (HC) subjects. Cognitive status was evaluated by means of the Montreal Cognitive Assessment (MoCA) and a neuropsychological evaluation of the executive function domain; fatigue was scored by the Fatigue Severity Scale (FSS). Resting motor threshold (RMT), the amplitude of the motor evoked potential (MEP), Short Intra-cortical Inhibition (SICI), Intra-cortical Facilitation (ICF), Long-interval Intracortical Inhibition (LICI) and Short-afferent inhibition (SAI) were investigated over the motor (M1) cortex. RESULTS: MoCA corrected scores were significantly different between the two groups (p = 0.023). The majority of the patients' performed sub-optimally in the neuropsychological assessment of the executive functions. The majority (77.80%) of the patients reported high levels of perceived fatigue in the FSS. RMT, MEPs, SICI and SAI were not significantly different between the two groups. On the other hand, Long COVID patients showed a reduced amount of inhibition in LICI (p = 0.003) and a significant reduction in ICF (p < 0.001). CONCLUSIONS: Neuro-Long COVID patients performing sub-optimally in the executive functions showed a reduction of LICI related to GABAb inhibition and a reduction of ICF related to glutamatergic regulation. No alteration in cholinergic circuits was found. SIGNIFICANCE: These findings can help to better understand the neurophysiological characteristics of Neuro-Long COVID, and in particular, motor cortex regulation in people with "brain fog".


Subject(s)
COVID-19 , Cognitive Dysfunction , Motor Cortex , Humans , Post-Acute COVID-19 Syndrome , Electromyography , Motor Cortex/physiology , Neural Inhibition/physiology , Transcranial Magnetic Stimulation , Evoked Potentials, Motor/physiology , Cognitive Dysfunction/diagnosis
2.
Pain Physician ; 26(3): E223-E231, 2023 05.
Article in English | MEDLINE | ID: covidwho-2316486

ABSTRACT

BACKGROUND: Transcranial magnetic stimulation (TMS) and transcutaneous magnetic stimulation (tMS) offer a novel noninvasive treatment option for chronic pain. While the recent COVID-19 pandemic caused by the SARS-CoV-2 virus resulted in a temporary interruption of the treatments for patients, it provided an excellent opportunity to assess the long-term sustainability of the treatment, and the feasibility of resuming the treatments after a brief period of interruption as no such data are available in current literature. METHODS: First, a list of patients whose pain/headache conditions have been stably controlled with either treatment for at least 6 months prior to the 3-month pandemic-related shutdown was generated. Those who returned for treatments after the shutdown were identified and their underlying pain diagnoses, pre- and posttreatment Mechanical Visual Analog Scale (M-VAS) pain scores, 3-item Pain, Enjoyment, and General Activity (PEG-3), and Patient Health Questionnaire-9 scores were assessed in 3 phases: Phase I (P1) consisted of a 6-month pre-COVID-19 period in which pain conditions were stably managed with either treatment modality; Phase II (P2) consisted of the first treatment visit period immediately after COVID-19 shutdown; and Phase III (P3) consisted of a 3-4 month post-COVID-19 shutdown period patients received up to 3 sessions of either treatment modality after the P2 treatment. RESULTS: For pre- and posttreatment M-VAS pain scores, mixed-effect analyses for both treatment groups demonstrated significant (P < 0.01) time interactions across all phases. For pretreatment M-VAS pain scores, TMS (n = 27) between-phase analyses indicated a significant (F = 13.572, P = 0.002) increase from 37.7 ± 27.6 at P1 to 49.6 ± 25.9 at P2, which then decreased significantly (F = 12.752, P = 0.001) back to an average score of 37.1 ± 24.7 at P3. Similarly, tMS (n = 25) between-phase analyses indicated the mean pretreatment pain score (mean ± standard deviation [SD]) increased significantly (F = 13.383, P = 0.003) from 34.9 ± 25.1 at P1 to 56.3 ± 27.0 at P2, which then decreased significantly (F = 5.464, P = 0.027) back to an average score of 41.9 ± 26.4 at P3. For posttreatment pain scores, the TMS group between-phase analysis indicated the mean posttreatment pain score (mean ± SD) increased significantly (F = 14.206, P = 0.002) from 25.6 ± 22.9 at P1 to 36.2 ± 23.4 at P2, which then significantly decreased (F = 16.063, P < 0.001) back to an average score of 23.2 ± 21.3 at P3. The tMS group between-phase analysis indicates a significant (F = 8.324, P = 0.012) interaction between P1 and P2 only with the mean posttreatment pain score (mean ± SD) increased from 24.9 ± 25.7 at P1 to 36.9 ± 26.7 at P2. The combined PEG-3 score between-phase analyses demonstrated similar significant (P < 0.001) changes across the phases in both treatment groups. CONCLUSIONS: Both TMS and tMS treatment interruptions resulted in an increase of pain/headache severity and interference of quality of life and functions. However, the pain/headache symptoms, patients' quality of life, or function can quickly be improved once the maintenance treatments were restarted.


Subject(s)
COVID-19 , Chronic Pain , Humans , Pandemics , Quality of Life , SARS-CoV-2 , Transcranial Magnetic Stimulation/methods , Headache/etiology , Chronic Pain/therapy , Chronic Pain/etiology , Treatment Outcome
3.
Asian J Psychiatr ; 81: 103438, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2243801

ABSTRACT

The number of patients suffering from long-COVID is currently increasing rapidly, even after the acute symptoms of COVID-19 have improved. The objective of this study was to investigate the effects of a pilot transcranial magnetic stimulation (TMS) treatment on neuropsychiatric symptoms caused by long-COVID. In this study, we examined the efficacy of the TMS treatment protocol, which has been established to be effective in refractory depression, by applying it to patients who sought TMS treatment for neuropsychiatric symptoms caused by long-COVID at TMS clinics in Tokyo, Japan in the context of the real world TMS registry study in Japan. Of the 23 patients (13 females) with long-COVID included in this case series, the main neuropsychiatric symptoms were chronic fatigue (n = 12) and cognitive dysfunction (n = 11), but most patients also showed mild depressive symptoms. The mean score on the Montgomery-Åsberg Depression Rating Scale before TMS treatment was 21.2, which improved to 9.8 after treatment. Similarly, the score on the Performance Status, which assesses the degree of fatigue, improved from 5.4 to 4.2, and the score on the Perceived Deficits Questionnaire-Depression 5-item, which reflects cognitive function, improved from 10.0 to 6.3. Although a few patients complained of pain at the stimulation site during the TMS as a side effect, there were no serious adverse events. Despite the limitations of this open-label pilot study, the TMS protocol implemented in this study may have beneficial effects on neuropsychiatric symptoms caused by long-COVID, including depressive symptoms, chronic fatigue, and cognitive impairment. These preliminary findings warrant further validation in randomized controlled trials.


Subject(s)
COVID-19 , Depressive Disorder, Major , Fatigue Syndrome, Chronic , Female , Humans , COVID-19/etiology , Fatigue Syndrome, Chronic/etiology , Japan , Pilot Projects , Post-Acute COVID-19 Syndrome , Transcranial Magnetic Stimulation/methods , Treatment Outcome
4.
Int J Environ Res Public Health ; 19(19)2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2066089

ABSTRACT

China launched the "critical battle against poverty" nationwide in 2012. As its main battlefield, Yunnan province promulgated the "triple medical security" (TMS) policy in 2017. This study, based on the pooled cross-section database of 2015-2020 of registered poor households in Yunnan province, employed the logit model to examine the effect of TMS on the vulnerability as expected poverty (VEP) of these households. It found that increasing the reimbursement rates for overall medical expenses and inpatient expenses and decreasing the proportion of out-of-pocket medical payment to income reduced the VEP; increases in the number of sick people in the family increased its VEP, and although the increase in the reimbursement rate for overall medical expenses or for inpatient expenses partially offset the VEP caused by the increase in the number of chronically ill people in the family, the VEP caused by the increase in the number of critically ill people would increase in the short term with the increase in the reimbursement rate for overall medical expenses or for inpatient expenses. The findings help improve policies concerning the medical security and health of the rural poor population, providing theoretical reference and practical guidance for future research.


Subject(s)
Family Characteristics , Rural Population , China/epidemiology , Health Expenditures , Humans , Policy , Poverty
5.
Heliyon ; 8(8): e10208, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1983118

ABSTRACT

Psychosocial hardships associated with the COVID-19 pandemic led many individuals to suffer adverse mental health consequences, however, others show no negative effects. We hypothesized that the electroencephalographic (EEG) response to transcranial magnetic stimulation (TMS) could serve as a toy-model of an individual's capacity to resist psychological stress, in this case linked to the COVID-19 pandemic. We analyzed data from 74 participants who underwent mental health monitoring and concurrent electroencephalography with transcranial magnetic stimulation of the left dorsolateral prefrontal cortex (L-DLPFC) and left inferior parietal lobule (L-IPL). Within the following 19 months, mental health was reassessed at three timepoints during lock-down confinement and different phases of de-escalation in Spain. Compared with participants who remained stable, those who experienced increased mental distress showed, months earlier, significantly larger late EEG responses locally after L-DLPFC stimulation (but not globally nor after L-IPL stimulation). This response, together with years of formal education, was significantly predictive of mental health status during the pandemic. These findings reveal that the effect of TMS perturbation offers a predictive toy model of psychosocial stress response, as exemplified by the COVID-19 pandemic.

6.
Front Public Health ; 9: 794167, 2021.
Article in English | MEDLINE | ID: covidwho-1775955

ABSTRACT

Transcranial magnetic stimulation (TMS), a non-invasive technique to stimulate human brain, has been widely used in stroke treatment for its capability of regulating synaptic plasticity and promoting cortical functional reconstruction. As shown in previous studies, the high electric field (E-field) intensity around the lesion helps in the recovery of brain function, thus the spatial location and angle of coil truly matter for the significant correlation with therapeutic effect of TMS. But, the error caused by coil placement in current clinical setting is still non-negligible and a more precise coil positioning method needs to be proposed. In this study, two kinds of real brain stroke models of ischemic stroke and hemorrhagic stroke were established by inserting relative lesions into three human head models. A coil position optimization algorithm, based on the genetic algorithm (GA), was developed to search the spatial location and rotation angle of the coil in four 4 × 4 cm search domains around the lesion. It maximized the average intensity of the E-field in the voxel of interest (VOI). In this way, maximum 17.48% higher E-field intensity than that of clinical TMS stimulation was obtained. Besides, our method also shows the potential to avoid unnecessary exposure to the non-target regions. The proposed algorithm was verified to provide an optimal position after nine iterations and displayed good robustness for coil location optimization between different stroke models. To conclude, the optimized spatial location and rotation angle of the coil for TMS stroke treatment could be obtained through our algorithm, reducing the intensity and duration of human electromagnetic exposure and presenting a significant therapeutic potential of TMS for stroke.


Subject(s)
Stroke , Transcranial Magnetic Stimulation , Algorithms , Brain/physiology , Humans , Stroke/therapy , Transcranial Magnetic Stimulation/methods
7.
Psychiatr Clin North Am ; 45(1): 123-131, 2022 03.
Article in English | MEDLINE | ID: covidwho-1517438

ABSTRACT

Among the far-reaching effects of the COVID-19 pandemic has been restricted access to safe and effective forms of psychiatric treatment. Focusing on electroconvulsive therapy and transcranial magnetic stimulation, we review the pandemic's impact on brain stimulation therapy by asking 3 fundamental questions-Where have we been? How are we doing? And where are we going?


Subject(s)
COVID-19 , Electroconvulsive Therapy , Brain/physiology , COVID-19/therapy , Humans , Pandemics , SARS-CoV-2 , Transcranial Magnetic Stimulation
9.
Clin Neurophysiol ; 132(5): 1138-1143, 2021 05.
Article in English | MEDLINE | ID: covidwho-1128943

ABSTRACT

OBJECTIVE: A high proportion of patients experience fatigue and impairment of cognitive functions after coronavirus disease 2019 (COVID-19). Here we applied transcranial magnetic stimulation (TMS) to explore the activity of the main inhibitory intracortical circuits within the primary motor cortex (M1) in a sample of patients complaining of fatigue and presenting executive dysfunction after resolution of COVID-19 with neurological manifestations. METHODS: Twelve patients who recovered from typical COVID-19 pneumonia with neurological complications and complained of profound physical and mental fatigue underwent, 9 to 13 weeks from disease onset, a psychometric evaluation including a self-reported fatigue numeric-rating scale (FRS, Fatigue Rating Scale) and the Frontal Assessment Battery (FAB). Intracortical activity was evaluated by means of well-established TMS protocols including short-interval intracortical inhibition (SICI), reflecting GABAA-mediated inhibition, long-interval intracortical inhibition (LICI), a marker of GABAB receptor activity, and short-latency afferent inhibition (SAI) that indexes central cholinergic transmission. TMS data were compared to those obtained in a control group of ten healthy subjects (HS) matched by age, sex and education level. RESULTS: Post-COVID-19 patients reported marked fatigue according to FRS score (8.1 ± 1.7) and presented pathological scores at the FAB based on Italian normative data (12.2 ± 0.7). TMS revealed marked reduction of SICI, and disruption of LICI as compared to HS. SAI was also slightly diminished. CONCLUSIONS: The present study documents for the first time reduced GABAergic inhibition in the M1 in patients who recovered from COVID-19 with neurological complications and manifested fatigue and dysexecutive syndrome. SIGNIFICANCE: TMS may serve as diagnostic tool in cognitive disturbances and fatigue in post-COVID-19 patients.


Subject(s)
COVID-19/physiopathology , Cognitive Dysfunction/physiopathology , Fatigue/physiopathology , GABAergic Neurons/physiology , Motor Cortex/physiopathology , Transcranial Magnetic Stimulation/methods , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Fatigue/etiology , Fatigue/therapy , Female , Humans , Male , Middle Aged
10.
J Neurol Sci ; 420: 117271, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-1023663

ABSTRACT

More than half of patients who recover from COVID-19 experience fatigue. We studied fatigue using neuropsychological and neurophysiological investigations in post-COVID-19 patients and healthy subjects. Neuropsychological assessment included: Fatigue Severity Scale (FSS), Fatigue Rating Scale, Beck Depression Inventory, Apathy Evaluation Scale, cognitive tests, and computerized tasks. Neurophysiological examination was assessed before (PRE) and 2 min after (POST) a 1-min fatiguing isometric pinching task and included: maximum compound muscle action potential (CMAP) amplitude in first dorsal interosseous muscle (FDI) following ulnar nerve stimulation, resting motor threshold, motor evoked potential (MEP) amplitude and silent period (SP) duration in right FDI following transcranial magnetic stimulation of the left motor cortex. Maximum pinch strength was measured. Perceived exertion was assessed with the Borg-Category-Ratio scale. Patients manifested fatigue, apathy, executive deficits, impaired cognitive control, and reduction in global cognition. Perceived exertion was higher in patients. CMAP and MEP were smaller in patients both PRE and POST. CMAP did not change in either group from PRE to POST, while MEP amplitudes declined in controls POST. SP duration did not differ between groups PRE, increased in controls but decreased in patients POST. Patients' change of SP duration from PRE to POST was negatively correlated to FSS. Abnormal SP shortening and lack of MEP depression concur with a reduction in post-exhaustion corticomotor inhibition, suggesting a possible GABAB-ergic dysfunction. This impairment might be related to the neuropsychological alterations. COVID-19-associated inflammation might lead to GABAergic impairment, possibly representing the basis of fatigue and explaining apathy and executive deficits.


Subject(s)
Action Potentials/physiology , COVID-19/complications , Executive Function/physiology , Fatigue/virology , Muscle, Skeletal/physiopathology , Aged , Aged, 80 and over , COVID-19/physiopathology , COVID-19/psychology , Evoked Potentials, Motor/physiology , Fatigue/physiopathology , Fatigue/psychology , Female , Humans , Male , Middle Aged , Motor Cortex/physiopathology , Neuropsychological Tests , Transcranial Magnetic Stimulation
11.
Front Neurol ; 11: 573718, 2020.
Article in English | MEDLINE | ID: covidwho-979025

ABSTRACT

Background: Novel coronavirus disease (COVID-19) morbidity is not restricted to the respiratory system, but also affects the nervous system. Non-invasive neuromodulation may be useful in the treatment of the disorders associated with COVID-19. Objective: To describe the rationale and empirical basis of the use of non-invasive neuromodulation in the management of patients with COVID-10 and related disorders. Methods: We summarize COVID-19 pathophysiology with emphasis of direct neuroinvasiveness, neuroimmune response and inflammation, autonomic balance and neurological, musculoskeletal and neuropsychiatric sequela. This supports the development of a framework for advancing applications of non-invasive neuromodulation in the management COVID-19 and related disorders. Results: Non-invasive neuromodulation may manage disorders associated with COVID-19 through four pathways: (1) Direct infection mitigation through the stimulation of regions involved in the regulation of systemic anti-inflammatory responses and/or autonomic responses and prevention of neuroinflammation and recovery of respiration; (2) Amelioration of COVID-19 symptoms of musculoskeletal pain and systemic fatigue; (3) Augmenting cognitive and physical rehabilitation following critical illness; and (4) Treating outbreak-related mental distress including neurological and psychiatric disorders exacerbated by surrounding psychosocial stressors related to COVID-19. The selection of the appropriate techniques will depend on the identified target treatment pathway. Conclusion: COVID-19 infection results in a myriad of acute and chronic symptoms, both directly associated with respiratory distress (e.g., rehabilitation) or of yet-to-be-determined etiology (e.g., fatigue). Non-invasive neuromodulation is a toolbox of techniques that based on targeted pathways and empirical evidence (largely in non-COVID-19 patients) can be investigated in the management of patients with COVID-19.

12.
Front Hum Neurosci ; 14: 595567, 2020.
Article in English | MEDLINE | ID: covidwho-955296

ABSTRACT

The coronavirus disease 19 (COVID-19) pandemic has resulted in the urgent need to develop and deploy treatment approaches that can minimize mortality and morbidity. As infection, resulting illness, and the often prolonged recovery period continue to be characterized, therapeutic roles for transcranial electrical stimulation (tES) have emerged as promising non-pharmacological interventions. tES techniques have established therapeutic potential for managing a range of conditions relevant to COVID-19 illness and recovery, and may further be relevant for the general management of increased mental health problems during this time. Furthermore, these tES techniques can be inexpensive, portable, and allow for trained self-administration. Here, we summarize the rationale for using tES techniques, specifically transcranial Direct Current Stimulation (tDCS), across the COVID-19 clinical course, and index ongoing efforts to evaluate the inclusion of tES optimal clinical care.

SELECTION OF CITATIONS
SEARCH DETAIL